
Rose
Capability-based persistent Ada OS

First-name Last-name

July 8, 2021

ii

Contents

1 Introduction 1

2 Capabilities 3
2.1 Introduction . 3
2.2 Capability Types . 3

2.2.1 Generic Capability Layout 4
2.2.2 Endpoint Capabilities 4
2.2.3 Page Object Capabilities 4
2.2.4 Process Capabilities 5
2.2.5 Boot Capabilities . 5
2.2.6 Low Level Capabilities 6

2.3 Invocation . 7
2.3.1 Invocation Record . 7

3 Processes 9
3.1 Launch Capability . 9
3.2 Initial Capabilities . 9
3.3 Example . 10
3.4 Environment . 10

4 Memory 11
4.1 Example . 11
4.2 Memory Interface . 12

5 Persistence 13
5.1 Checkpoint Objects . 13
5.2 Checkpoint Operation . 13

5.2.1 Pages . 13
5.2.2 Process . 13
5.2.3 Merge . 14
5.2.4 Pseudocode . 14

5.3 Restore . 15
5.4 Drive Layout . 15

5.4.1 Partition Example . 15

iii

iv CONTENTS

5.4.2 Boot partition . 15
5.4.3 Swap and checkpoint state partition 16
5.4.4 Change Partition . 16

6 Interfaces 19
6.1 Standard Interfaces . 19

6.1.1 Rose . 19
6.1.2 Rose.Capability . 19
6.1.3 Rose.Capability_Set 20
6.1.4 Rose.Streams . 20
6.1.5 Rose.Streams.Read . 21
6.1.6 Rose.Streams.Write 21
6.1.7 Rose.Launch . 21
6.1.8 Rose.Process . 22
6.1.9 Rose.System.Create 22
6.1.10 Rose.System.Cap_Copy 23
6.1.11 Rose.System.Boot . 23
6.1.12 Rose.System.Device_Memory 23
6.1.13 Authentication Interfaces 25
6.1.14 File Interfaces . 25

6.2 Interface Definition Language 26

7 Servers 27
7.1 Boot Servers . 27

7.1.1 Memory Manager . 28
7.1.2 Process Manager . 28

8 Boot Sequence 29
8.1 Overview . 29
8.2 Initial Processes . 29

8.2.1 init . 29
8.2.2 console . 29
8.2.3 cap set . 29
8.2.4 timer . 29
8.2.5 mem . 30
8.2.6 pci . 30
8.2.7 ata . 30

8.3 First Boot . 30
8.4 Restore Boot . 30
8.5 Scripts . 30

9 Petal 31
9.1 Generating init Scripts . 31

CONTENTS v

A Architecture Specifics 33
A.1 i686 . 33

A.1.1 Invocation Record . 33
A.1.2 Page Table . 33
A.1.3 Persistence . 33

A.2 x64 . 33

vi CONTENTS

List of Figures

6.1 Interface capability request 24

8.1 Sample Petal script for init 30

9.1 Command for generating init script package 31
9.2 Sample init Petal source . 32

vii

viii LIST OF FIGURES

List of Tables

2.1 Capability Types . 3
2.2 Boot capability endpoints . 5
2.3 Invocation Flags . 8

3.1 Standard process capabilities 9
3.2 Standard capability environment 10

4.1 Example memory snapshot after launching ls 11

5.1 Example 100G disk layout . 15
5.2 Change Partition Header . 16
5.3 Checkpoint block (4K) . 17

6.1 Standard System Interfaces 24
6.2 The meta interface . 25
6.3 Standard Authentication Interfaces 25
6.4 Standard File Interfaces . 25

7.1 Launch caps for init process 27
7.2 Boot Servers . 27

A.1 i686 invocation record . 33

ix

x LIST OF TABLES

Preface

xi

xii LIST OF TABLES

1

Introduction

1

2 1. INTRODUCTION

2

Capabilities

2.1 Introduction

A capability represents permission to perform one or more operations. The
possession of a capability for an operation O is both necessary and sufficient
for performing O.

For the process, a capability is a 32-bit word, with no particular struc-
ture. The kernel uses the process capability to index a private table of
capability structures. Each structure defines the capability type, and the
object to which it applies.

Capability structures are stored in pages. The first 32 capabilities used
by a process are stored directly in the kernel process structure; the rest are
stored in private pages mapped to the process.

2.2 Capability Types

Type Description
Null The null capability; produces an error if used
Page Object Controls access to physical memory
Schedule
Process
Interface
Endpoint
Set
Kernel

Table 2.1: Capability Types

3

4 2. CAPABILITIES

2.2.1 Generic Capability Layout

A capability structure is 16 bytes long. The particular layout depends on
the capability type. Common fields are as follows.

034678111231

Identifier Use(4) I Flags Type
Endpoint

Payload

The Identifier is an identifier which must be matched when using a
capability. It is ignored unless the I flag is set.

Use is the remaining use count. If this is zero, the capability can be used
any number of times. Otherwise, each use of the capability decrements Use
by 1, and when it reaches zero, the capability is overwritten with the null
capability.

Flags are capability-specific flags.
The Endpoint, if non zero, is an index into the kernel-private endpoint

array.
The Payload is a type-specific payload.

2.2.2 Endpoint Capabilities

An endpoint capability is used to invoke an endpoint on the remote object.
If the process is currently listening on the capability’s endpoint, the receive
invocation will return with the corresponding invocation record.

Endpoint Capability Layout
03478151631

Identifier Use(4) I 0 0 1 0 1
Endpoint

Object Id

2.2.3 Page Object Capabilities

A page object gives access to a shared buffer. Three endpoints are imple-
mented: copy-to-buffer, copy-from-buffer, and map-device-memory.

2.2. CAPABILITY TYPES 5

Page Object Capability Layout
03478151631

Identifier Use(4) I 0 RW0 1 0 0
Endpoint

Page Object Id

2.2.4 Process Capabilities

A process capability is used to communicate with a running process. Two
actions are possible, depending on the value of the Op field. If Op is zero, the
capability returns the process’s default interface. If Op in one, the capability
sends the capabilities in the invocation to the process.

Process capabilities are normally given to the parent process by the
kernel when the child is launched. The parent can then query the child, or
send it capabilities. For example, when the Petal shell executes a program,
it uses the process capability to send the default input, output, and error
streams (amongst other interfaces).

Process Capability Layout
03478151631

Identifier Use(4) 0 Op 0 1 0 0
0

Process Object Id

2.2.5 Boot Capabilities

These capabilities are only used during system initialisation. At boot, the
kernel launches the process init, which is pre-configured with a script which
starts the rest of the system. Boot capabilities are used to accomplish this.

Boot Capability Endpoints

Operation Arguments
Launch Boot Module Module index, caps

Table 2.2: Boot capability endpoints

6 2. CAPABILITIES

Boot Capability Layout
03478151631

Identifier Use(4) 0 1 0 0 0
0
0
0

2.2.6 Low Level Capabilities

These are capabilities which allow device drivers to talk to hardware. The
are necessarily architecture-dependent. Some examples are shown below.

Port IO Layout (i686)

This capability allows a process to execute the equivalent of out addr, reg
and in addr instructions. 03478151631

Identifier Use(4) 0 Sz 1 1 1 0
Endpoint

First Port
Last Port

The Sz field specifies 1-, 2-, 4- or 8- byte data for port in/out instructions
(i.e. number of bytes per instruction is 2Sz).

The possible endpoints are as follows.
Endpoint Op Description
1 port out Each invocation word is sent to First Port
2 port in Each receivable word is set by an in on First Port
3 port out range invocation data specifies

(port offset, value) pair for port-out
4 port in range invocation data specifies port offsets, result written

to received words

Invocation word format

The sent words layout for the port-out-range endpoint varies depending on
the size of the data. For 8-bit data, each sent word consists of the value in
byte 0, and the offset in byte 1. 16-bit data is encoded into bytes 0 and 1,
with the offset in byte 2. 32-bit data is encoded in up to three groups of
five sent words. The first word of each group has four port offsets, while
the second, third, fourth and fifth words contain the corresponding data for
each port.

2.3. INVOCATION 7

For the port-in-range endpoint, each sent word contains a port offset, and
when returning the received words contain the result of the in instruction.
If the received word count is larger than the sent word count, the extra
offsets will all be zero. Extra sent words are ignored.

In all cases, an offset of 255 indicates that no data should be sent. Any
offset that is not within the port range is also ignored.

2.3 Invocation

A capability is invoked by making a system call using an invocation record.

2.3.1 Invocation Record
0123458111215161920232431

reserved Use CC RWC SWC WPE S RYBC
Capability

Reply Capability
Shared buffer length

Shared buffer address

Up to 15 capabilities

Up to 15 argument words

The RWC field is the number of words which the sender is prepared to
receive in response to the invocation. A reply to this message cannot contain
more words than specified here, although it can contain less.

The SWC field is the number of sent words.
The CC field is the number of sent words.
The Capability field contains the capability being invoked. The Reply

Capability field is set by the kernel, and gives the target of an invocation
a capability on which to send a reply.

8 2. CAPABILITIES

If any capabilities are sent, the Use field limits the number of times they
can be used. An allocation count of zero means there is no limit.

Id Name Description
W Write If the P flag is set, allow the receiver to write to the buffer
P Pages Send one or more shared buffers
E Error An error occurred (code is in first data word)
S Send Unprompted send on a capability
R Receive Willing to receive messages
Y Reply This is a reply to an earlier send
B Block The sender will block until the next message
C Cap Construct Create a reply cap for the message response
SWC Sent Word Count SWC contains the number of sent words
RWC Receive Word Count RWC contains the maximum received words
CC Capability Count Number of sent words which are capabilities

Table 2.3: Invocation Flags

3

Processes

A process is named by a launch capability. Invoking the capability executes
the process.

Object ids in the range 0 to 224 − 1 represent processes.
Process id 1 is used to refer to the Kernel.

3.1 Launch Capability

3.2 Initial Capabilities

The initial environment is inherited from the parent process, along with
capabilities defined when the process is installed.

The generated interface libraries rely on caps 1, 2, and 3 being the ones
from table 3.1.

The standard libraries rely on cap 4 being a capability for the Cap_Set
interface. The set referenced by this cap is defined by Table 3.2. The en-
vironment accessed by the AdaĖnvironment_Variables package contains an
entry for each Id in the table, with the index of the corresponding capability
in the cap set.

Cap Type Description
1 Destroy Method Ends process
2 Create Endpoint Method Endpoint constructor
3 Create Cap_Set Method Cap set constructor
4 Argument_Caps Interface Cap set containing supplied caps

Table 3.1: Standard process capabilities

9

10 3. PROCESSES

Id Interface Description
1 Standard_Input Stream_Reader Standard input stream
2 Standard_Output Stream_Writer Standard output stream
3 Standard_Error Stream_Writer Standard error stream
4 Current_Directory Directory Start directory
5 Heap Heap Heap management
6 Clock Clock System clock

Table 3.2: Standard capability environment

3.3 Example
Consider the following excerpt from a shell session:

user$ cat readme.txt
A launch capability for the cat program is found in the shell’s environ-

ment. A new environment is created, setting environment capabilities for
input/output streams. The argument is interpreted as the name of a file, a
stream-reader capability to this file is added to the environment.

3.4 Environment
The environment is supplied as a table of entries starting at a known address.

4

Memory

Physical memory is managed by the memory manager. Page objects are
managed by the page object manager. A process belongs to a particular
space bank, which represents a range of page objects. Space banks are hier-
archical. A page object is a direct member of at most one space bank. At the
top of the space bank hierarchy is the root space bank, which encompasses
the entire page object id range.

Each process executes in a flat memory space starting at zero. These
are the virtual pages. Virtual pages are mapped or unmapped. A mapped
virtual page references a corresponding physical page. A physical page may
be mapped by any number of virtual pages. This mapping is not persisted.

4.1 Example

The command ls lists the contents of a directory. A user shell normally has
a launch capability for ls. When this capability is invoked, a new process
is created. A snapshot of part of the memory state might look something
like table 4.1.

Page Object Virtual Address Physical Address Description
ls + 0 0000 0000 4020 C000 1st page of ls text segment
ls + 1000 0000 1000 ABCD 2000 2nd page of ls text segment
ls + 2000 0000 2000 3rd page (not paged in yet)
base + 3000 BFFF F000 D020 1000 stack page (in user space map)

Table 4.1: Example memory snapshot after launching ls

Every physical page is either free, or mapped to a page object. This
mapping is not persisted. The memory manager keeps track of free memory
pages and memory page ⇔ page object mappings.

11

12 4. MEMORY

4.2 Memory Interface
A memory capability can be used to map a page object id. This makes the
page object available to a running process, although it does not necessarily
exist in physical memory yet. When a process is launched, four page ob-
ject ranges are mapped: the code segment (read-only, executable), the text
segment (read-only), the data segment (read/write) and the stack segment
(read/write).

If the memory server already knows about a read-only page object id,
the map is not updated.

A stack segment page object id is always new, and is therefore always
recorded in the memory manager.

A data segment page object may be initialised or uninitialised.
If an initialised read/write page object id is mapped, and the memory

manager already has the page object mapped read-only, the page object is
mapped to the read-only version. If it is later written to, a copy will be
made and the page object will be re-mapped.

An uninitialised read/write page object is recorded (same as a stack
segment page).

5

Persistence

The active state of the system is defined by the page object state, which is
overridden by the swap state, which is overridden by the memory state.

5.1 Checkpoint Objects
A page object is a single page (where the size of the page is architecture-
dependent). Object identifiers for page objects range from ff00 0000 0000
0000 to ffff ffff ffff ffff. A checkpoint state contains all page objects
from a particular system state.

The swap state is a copy of the page object state, updated by page writes
which have occurred since the last checkpoint. A process addresses its own
memory using normal virtual memory conventions; these hardware pages
are mapped by the kernel to page object ids, which can index swap and
page object state directly.

The memory state is a cache of the swap state.

5.2 Checkpoint Operation
Persistence is implemented by a regular checkpoint operation.

5.2.1 Pages

Memory pages are always allocated read-only. The first write to a page (if
it is allowed) causes a page fault which switches the page to read/write and
marks it as dirty. When a dirty page is swapped out or synchronised, it is
written to swap and its page object id is recorded in a list.

5.2.2 Process

When a checkpoint begins, a new, empty, changed page object list is created.
All memory pages are marked as read-only, and all dirty pages are written to

13

14 5. PERSISTENCE

swap (via synchronisation). The former changed page object list is scanned,
and the changed pages are copied. A new checkpoint is created, which
references the previous checkpoint, the most recent checkpoint state, and
page content copies.

If a page write occurs while the checkpoint process is running, a page
fault will result (because all pages are read-only at this point). If dirty pages
are still being written, the faulting process will be blocked until the changed
page object list scan starts.

5.2.3 Merge

From time to time, the most recent checkpoint is merged into a full page
object state, which will be used for subsequent checkpoint operations.

There exists at least one consistent checkpoint state. The last operation
of a checkpoint merge writes an identifier which certifies the new checkpoint
state. When restoring a checkpoint, if this identifier is missing or malformed,
the previous checkpoint state is used instead.

5.2.4 Pseudocode

Initialising Checkpoint

checkpoint:
lock

Checkpoint_State := Write_Dirty_Pages

for Page of Writable_Page_List loop
if Page.Dirty then

Page.Write_To_Swap
end if
Page.Writable := False

end loop
Writable_Page_List.Clear
old_list := current_list
current_list := new Changed_Page_Object_List
Checkpoint_State := Copy_Changed_Swap

end lock

Copying Changed Blocks

for Page_Id of Changed_Page_Object_List loop
Target_Block := Next_Changed_Page_Block
Copy_Block (Active_Swap (Page_Id), Target_Block)
Append_Checkpoint_Reference (Page_Id, Target_Block)

end loop

5.3. RESTORE 15

Commit_Checkpoint (Change_Page_Object_list)

Merging Checkpoint

Copy_Current_Page_Object_State
for Checkpoint of Incremental_Checkpoint_List

for Page_Id of Checkpoint.Page_Id_List
Copy_Block (Page_Id.Checkpoint_Block,

New_Page_Object_State.Block (Page_Id))
end loop

end loop

Commit_And_Activate (New_page_Object_State)

5.3 Restore

To restore from a checkpoint, the most recent consistent checkpoint state is
copied to swap. Then, for each checkpoint based on this state, the previous
checkpoint is recursively applied, followed by each changed page object.
Any required pages can be loaded from swap, and the system will proceed
normally.

5.4 Drive Layout

5.4.1 Partition Example

This is an example of how to partition a 64G disk.

Partition Size Description
Boot 100MB Grub, kernel image, boot modules
Swap 16G Active swap partition
State 16G Last checkpointed state
Change 16G Changes since last full checkpoint
Incremental 12G Changes since last incremental checkpoint

Table 5.1: Example 100G disk layout

5.4.2 Boot partition

This partition contains the boot sector, grub, a kernel image and enough
modules to launch a minimal system. The init module looks for a checkpoint,
and if found, restores from it. Otherwise, the installation process is started.

16 5. PERSISTENCE

5.4.3 Swap and checkpoint state partition

These partitions are formatted identically. Each block in the partition cor-
responds to exactly one page object; in particular, the block number or’d
with the page object type specifier.

5.4.4 Change Partition

The change partition is divided into a header block, a range of change file
blocks, and a range of changed page object blocks.

The change partition is cleared after a checkpoint merge.

Header Block

Offset Description
0000 Magic number
0004 Reserved
0008 Checkpoint Identity
0010 Checkpoint Start Timestamp
0018 Checkpoint Finish Timestamp
0020 First checkpoint block
0028 Checkpoint block count
0030 Working Checkpoint Identity
0038 Working Checkpoint Start
0040 Working checkpoint first block
0048 Next free checkpoint block
0050 Next free page block

Table 5.2: Change Partition Header

Checkpoint Block (4K)

5.4. DRIVE LAYOUT 17

Offset Description
0000 Magic number
0004 Reserved
0008 Checkpoint Identity
0010 Next checkpoint block
0018 Reserved
0020 Page Object Id 1
0028 Page Object Block 1
0030 Page Object Id 2
0038 Page Object Block 2
....
1FE0 Page Object Id 509
1FE8 Page Object Block 509
1FF0 Checkpoint Identity
1FF8 Magic number

Table 5.3: Checkpoint block (4K)

18 5. PERSISTENCE

6

Interfaces

6.1 Standard Interfaces

6.1.1 Rose

The Rose interface provides operations common to all other interfaces. It is
implicitly inherited by every interface.

Operations

• Destroy Destroys the object associated with the capability.

6.1.2 Rose.Capability

Operations on capabilities.

Inherits

Rose

Operations

• Create Entry Manufactures a capability which can call the given
endpoint

function Create_Entry
(Endpoint : Rose.Objects.Endpoint_Id)
return Capability;

• Create Endpoint Creates a new endpoint and returns its identity.

19

20 6. INTERFACES

function Create_Endpoint
return Endpoint_Id;

• Receive Any Respond to an invocation of any known capability.

procedure Receive_Any
(Called_Endpoint : out Endpoint_Id;
Reply_Cap : Capability;
Parameters : Invocation_Record);

• Create Set Manufactures a capability which represents a set of ca-
pabilities.

function Create_Set
return interface Rose.Capability_Set;

6.1.3 Rose.Capability_Set

Operations on capability sets.

Inherits

Rose

Operations

• Insert Adds a capability to the set

function Insert
(Cap : Capability);

• Delete Delete a capability from the set.

procedure Delete
(Cap : Capability);

6.1.4 Rose.Streams

Operations on streams.

6.1. STANDARD INTERFACES 21

Inherits

Rose

6.1.5 Rose.Streams.Read

Operations for reading from streams

Inherits

Rose.Streams

Operations

• Read Reads a buffer from the stream

procedure Read
(Buffer : out Storage_Array;
Length : in out Storage_Count)

6.1.6 Rose.Streams.Write

Operations for writing to streams

Inherits

Rose.Streams

Operations

• Write Writes a buffer to the stream

procedure Write
(Buffer : Storage_Array;
Length : Storage_Count)

6.1.7 Rose.Launch

Launching processes.

22 6. INTERFACES

Operations

• Launch Launches the process named by this capability. Sent caps
are copied to the process. Returns a capability which implements the
Processes interface for this process.

function Launch
(Caps : Array_Of_Capabilities)
return interface Rose.Process;

6.1.8 Rose.Process

Interface to processes.

Operations

• Launch Launches the process named by this capability. Sent caps are
copied to the process.

function Launch
(Caps : Array_Of_Capabilities)
return Capability;

6.1.9 Rose.System.Create

Interface for creating capabilities.

Operations

• Create Capability Manufactures a capability based on the represen-
tation given in the sent words.

function Create_Capability
(Header : Word_32;
Payload_1, Payload_2, Payload_3 : Word_32)

return Capability;

Derived Operations

• Create Interface Capability Manufactures an interface capability
for the given endpoint and object.

6.1. STANDARD INTERFACES 23

function Create_Interface_Capability
(Endpoint : Endpoint_Id;
Object : Object_Id)

return Capability
is (Create_Capability

(16#0000_0005#, Endpoint,
Low_Word (Object), High_Word (Object0)));

6.1.10 Rose.System.Cap_Copy

Interface for copying capabilities from other objects.

Operations

• Copy Capability Manufactures a capability which is a copy of an
existing capability in the given object.

function Copy_Capability
(Header : Word_32;
Payload_1, Payload_2, Payload_3 : Word_32)

return Capability;

6.1.11 Rose.System.Boot

Boot module interface

Operations

• Launch Starts a boot module.

function Launch
(Module_Index : Positive;
Caps : Capability_Array)

return Object_Id;

6.1.12 Rose.System.Device_Memory

Interface for setting up memory-mapped devices.

24 6. INTERFACES

078111215162122252631

Endpoint (1) Alloc (0) Caps (0) SW (1) RW (2) - S R - B - - -

Capability (1)

Interface Id
Major Version Minor Version Release

Figure 6.1: Interface capability request

Operations

• Reserve Reserves an area of memory for devices. Pages within this
area can be acquired by device drivers using a page object cap.

procedure Reserve
(Base : Physical_Address;
Bound : Physical_Address);

Name Identity Implemented By Notes
Meta 1 All A process usually has this as capability 1
Cap Copy 2 Kernel Used during installation to subvert security
Kernel 3 Kernel
Procmem 4 mm Paged process memory management
Registry 5 registry Registry of interface identifiers
Signal 6 any Send and receive signals
Authentication 7 passwd
Account 8 passwd
Make Executable 9 exec
Executable 10 ELF binaries
Process 11 running processes
Login 12 login
User 13 user

Table 6.1: Standard System Interfaces

Meta Interface

The meta interface is used for managing capabilities. Sending to this inter-
face creates new capabilities, or sends existing capabilities to other objects.
It can also be used to get a capability for an object’s default interface.

6.1. STANDARD INTERFACES 25

Endpoint Name Operations Description
1 Create Interface Cap Send Creates and returns a

new interface capability
for the sending object

2 Create Endpoint Cap Send Creates and returns a
new endpoint capability
for the sending object

3 Create Page Object Cap Send data0 contains page address
data1 contains the readable
and writable flags

5 Create Singleton Receive Send
6 Create Cap Set Send
16 Receive on provided caps Receive Maximum receive caps is 6
17 Receive on any known cap Receive
31 Exit Send End the sending process.

Table 6.2: The meta interface

The process memory manager interface

A server implementing the procmem interface can be notified when a process
starts, when it ends, and when it requests access to virtual addresses which
it does not currently have.

It is expected that the server will have access to a page mapper interface,
which will allow it to map and unmap pages as required.

6.1.13 Authentication Interfaces

Name Identity Implemented By Notes
Login 12 login
User 13 user

Table 6.3: Standard Authentication Interfaces

6.1.14 File Interfaces

Name Identity Implemented By Notes
File System 100 rfs, xmlfs, isofs
Directory 101 rfs, xmlfs, isofs
File 102

Table 6.4: Standard File Interfaces

26 6. INTERFACES

6.2 Interface Definition Language

7

Servers

7.1 Boot Servers
When the kernel is ready to schedule its first process, it chooses the first
boot module. This is the init program. Its job is to load the rest of the
boot modules, and find the most recent consistent checkpoint from which to
restore.

Init requires a particular set of launch caps (see Table 7.1). Each of these
capabilities is invoked in order. Init runs with a low priority, causing it to
block while each boot server initialises.

Init is configured via a Petal script (see Figure 8.1 for a small example).
This script is compiled to an Ada package spec, which is with’d by the init
source.

Cap Name Description
1 meta Standard meta cap
2 launch Cap for launching boot modules
2 copy Cap for copying process caps
3 construct-port Cap for constructing port caps

Table 7.1: Launch caps for init process

Pid Name Interface Description
2 init none Installs system image and launches boot servers
3 console stream-writer writes to boot terminal
4 hd0 storage boot hard drive
7 mem mem memory manager
8 checkpoint checkpoint checkpointing process
9 proc proc process manager

Table 7.2: Boot Servers

27

28 7. SERVERS

7.1.1 Memory Manager

7.1.2 Process Manager

8

Boot Sequence

8.1 Overview

The boot process initialises the kernel and starts the first process, init.

8.2 Initial Processes

8.2.1 init

The kernel gives the init process a single create capability, which is used
to create launch and copy capabilities for the boot modules.

8.2.2 console

The console program implements a stream writer interface, and sends any-
thing it receives to its device. For rose-x86 it writes directly to the console
buffer, which is mapped by the kernel at boot time. Normally this is the
first server launched by init.

8.2.3 cap set

The cap set process allows other processes to create a set of capabilities,
which can be referenced using a single capability. Once this process is run-
ning, the remaining boot processes are not limited to four capabilities each.

8.2.4 timer

The kernel provides a single timeout, so there is a timer server which mul-
tiplexes multiple timers onto it.

29

30 8. BOOT SEQUENCE

procedure Init
(Create : interface Meta)

is
Console : constant interface Process :=

Launch.Launch_Boot_Module (2);
Writer : constant interface Stream_Writer :=

Cap_Copy.Copy_Cap (Console, 1);
begin

Output_Buffer := Start_Init;
Writer.Write (Output_Buffer, Start_Init’Length);

end Init;

Figure 8.1: Sample Petal script for init

8.2.5 mem

The standard memory manager is launched with a memory capability, which
can be queried for the available physical memory layout, and invoked to map
and unmap virtual addresses to physical ones. It implements the memory
manager interface, which can add and remove processes, and handle page
faults.

8.2.6 pci

Scans the PCI bus.

8.2.7 ata

Drive for ATA/ATAPI storage.

8.3 First Boot

8.4 Restore Boot

8.5 Scripts
The boot process is controlled by a compiled Petal script. A sample script
is shown in figure 8.1.

9

Petal

9.1 Generating init Scripts
A subset of Petal can be used to generate an Ada package suitable for use
as an init script. The Petal source is processed by an Aquarius plugin.

$ aquarius -f -i init.petal -a init

Figure 9.1: Command for generating init script package

31

32 9. PETAL

procedure Init
(Meta_Cap : Capability;
Launch_Cap : Capability;
Copy_Cap : Capability;
Create_Cap : Capability)

is
Console_Ready : constant String := "init: console ready" & NL;
Memory_Buffer : Page;
Page_Object_Cap : Capability;
Console_Process_Cap : Capability;
Console_Memory_Cap : Capability;
Console_Write_Cap : Capability;

begin
Page_Object_Cap :=

Meta_Cap.Endpoint (3).Invoke
(Memory_Buffer’Address, Memory_Buffer’Storage_Size);

Console_Memory_Cap :=
Create_Cap (Driver_Page_Capability, 16#000B_8000#);

Console_Process_Cap :=
Launch_Cap (Meta_Cap, Console_Memory_Cap);

Console_Write_Cap :=
Copy_Cap (Console_Process_Cap, 1);

Memory_Buffer.Write (Console_Ready);
Console_Write_Cap (Page_Object_Cap, Console_Ready’Length);

end Init;

Figure 9.2: Sample init Petal source

Appendix A

Architecture Specifics

A.1 i686

A.1.1 Invocation Record

The first four words of an invocation are placed in registers. The remaining
words, if any, are pushed onto the stack.

Register Parameter
eax Control word
edx Used by sysenter instruction
ebx Invoked capability
ecx Used by sysenter instruction
esp
ebp
esi First argument
edi Second argument

Table A.1: i686 invocation record

A.1.2 Page Table

Uses 4K pages. Per-process virtual memory is 3G. Page object ids are 31
bits long, allowing up to 243 bytes or 8TB of state.

A.1.3 Persistence

A.2 x64

33

	Introduction
	Capabilities
	Introduction
	Capability Types
	Generic Capability Layout
	Endpoint Capabilities
	Page Object Capabilities
	Process Capabilities
	Boot Capabilities
	Low Level Capabilities

	Invocation
	Invocation Record

	Processes
	Launch Capability
	Initial Capabilities
	Example
	Environment

	Memory
	Example
	Memory Interface

	Persistence
	Checkpoint Objects
	Checkpoint Operation
	Pages
	Process
	Merge
	Pseudocode

	Restore
	Drive Layout
	Partition Example
	Boot partition
	Swap and checkpoint state partition
	Change Partition

	Interfaces
	Standard Interfaces
	Rose
	Rose.Capability
	Rose.Capability_Set
	Rose.Streams
	Rose.Streams.Read
	Rose.Streams.Write
	Rose.Launch
	Rose.Process
	Rose.System.Create
	Rose.System.Cap_Copy
	Rose.System.Boot
	Rose.System.Device_Memory
	Authentication Interfaces
	File Interfaces

	Interface Definition Language

	Servers
	Boot Servers
	Memory Manager
	Process Manager

	Boot Sequence
	Overview
	Initial Processes
	init
	console
	cap set
	timer
	mem
	pci
	ata

	First Boot
	Restore Boot
	Scripts

	Petal
	Generating init Scripts

	Architecture Specifics
	i686
	Invocation Record
	Page Table
	Persistence

	x64

